Численное моделирование влияния грунтового ядра на несущую способность трубосваи

К.т.н., доцент Г.Я. Булатов, магистр А.П. Ножнов*,

ГОУ Санкт-Петербургский государственный политехнический университет

Фундамент является одной из основных составных частей здания, соответственно, к его проектированию необходимо подходить с особой тщательностью и осторожностью. Неправильно запроектированный фундамент может стать причиной серьезных негативных последствий (обрушения, аварий, сильных осадок как строящегося здания, так и окружающей застройки), перерасхода трудозатрат и энергозатрат, потери времени и финансов.

К сожалению, не всегда удается подобрать наиболее эффективный вариант как конструкции фундамента, так и самой сваи. Вызвано это различными причинами, в основном недостаточным количеством исследований темы в нашей стране, а также устаревшими и неполно отражающими все аспекты новых технологий нормативными документами.

Так, перспективные технологии возведения зданий и сооружений с применением стальных и трубчатых свай и сопутствующих технологий («свая в трубе» [2], «фундамент на трубогрунте» [3] и др.), недостаточно изучены, а вследствие этого до проектировщиков не доходят решения, которые в иной ситуации могли бы оказаться лучшими для конкретного объекта.

Само по себе использование труб относится к «щадящим» методам и оказывает минимальное воздействие на окружающую застройку, что очень актуально для Санкт-Петербурга, учитывая сложные инженерно-геологические условия и уплотнительную застройку.

В данной статье сделана попытка объединить имеющиеся в современной строительной науке данные об этой технологии и провести комплексный анализ с примерами расчетов стальных трубчатых свай. Одной из задач также была подготовка рекомендаций по выбору основных характеристик сваи.

Основной проблемой расчета является недостаток данных и сведений. А имеющиеся методики расчета сильно варьируются, как в постановке задачи, так и в пути ее решения. Так, например, основной нормативный документ [4], применяемый в России, не отражает в полной мере особенностей расчета СТС (здесь и далее: СТС – стальные трубчатые сваи) с открытым нижним концом, приравнивая их к обычным сваям с закрытым нижним концом. Нет отдельных рекомендаций по расчету СТС, не учтены такие явления, как «естественное самозапирание» (естественное самозапирание – процесс самозапирания сваи без ведения дополнительных искусственных операций, происходящий в результате естественных физико-механических процессов в ходе погружения сваи), влияние грунтового ядра на несущую способность сваи. Нормативный расчет имеет и ряд других недостатков (например, значения для R по табл.1 [4] начинаются только с глубины забивки 3 метра).

Сначала вкратце изложим методику расчета СТС, учитывающую влияние грунтового ядра.

Математическая модель влияния грунтового ядра на несущую способность трубчатой сваи по теории предельного равновесия

Расчётную схему для вычисления несущей способности трубчатой сваи представим в виде рис. 1.

Несущую способность трубчатой сваи запишем в виде:

$$F_d = F_{df} + F_{dR} + F_{d\mathcal{A}} + \Delta F_{d\mathcal{A}} , (1)$$

где выделим следующие составляющие:

 F_{df} – полное боковое сопротивление по наружной поверхности;

F_{dR} – полное лобовое сопротивление по сечению стальной трубчатой сваи, т.е. ножевое (по площади нетто);

F_{dя} – полное лобовое сопротивление грунтового ядра, заполняющего полость стальной трубчатой сваи при её забивке;

 $\Delta F_{d\mathcal{R}}$ – дополнительное лобовое сопротивление грунтового ядра, заполняющего полость сваи при ведении дополнительных мероприятий.

Рисунок 1.Расчётная схема для стальной трубчатой сваи

РАСЧЕТЫ

Первая составляющая [4]:

$$F_{df} = \gamma_c \cdot u \sum \gamma_{cf} \cdot h_i \cdot f_i,$$
(2)

где γ_c – коэффициент условий работы сваи в грунте, принимаемый γ_c = 1;

и – наружный периметр поперечного сечения сваи;

*f*_i – расчетное сопротивление *i*–го слоя грунта основания по боковой поверхности сваи;

*h*_i – толщина *i*-го слоя грунта, соприкасающегося с боковой поверхностью сваи;

γ_{cf} – коэффициент условий работы грунта на боковой поверхности сваи, учитывающий влияние способа
погружения сваи на расчетные сопротивления грунта.

Вторая составляющая [4]:

$$F_{dR} = \gamma_c \cdot \gamma_{cR} \cdot R \cdot A$$
, (3)

R – расчетное сопротивление грунта под нижним концом сваи;

А – площадь опирания стальной трубчатой сваи на грунт, принимаемое по площади поперечного сечения сваи нетто;

γ_{cR} – коэффициент условий работы грунта под нижним концом сваи, учитывающий влияние способа погружения сваи на расчетные сопротивления грунта.

Третью составляющую запишем в виде

$$F_{d\mathcal{A}} = \gamma_c \cdot \gamma_{c\mathcal{A}} \cdot R_{\mathcal{A}} \cdot A_{\mathcal{A}}$$
 , (4)

где γ_{cR} – коэффициент условий работы грунта под нижним концом сваи, учитывающий влияние способа погружения сваи на расчетные сопротивления грунта [4];

*R*_Я – удельное лобовое сопротивление грунтового ядра;

А_я – площадь сечения ядра.

Удельное сопротивление ядра представим в виде

$$R_{g} = \min\{R_{R}; R\}$$
, (5)

где *R*_B – удельное сопротивление проталкиванию грунтового ядра внутрь полости трубы.

Запишем

$$R_{B} = \max\left\{q_{\mathcal{A}}; R^{*}\right\}$$
 при $R^{*} = rac{F_{df}^{*}}{A_{\mathcal{A}}}$ (6)

Здесь q_я – удельное сопротивление проталкиванию грунтового ядра с учётом эффекта его «самозапирания»;

*R** – то же, за счет сил простого трения по внутренней поверхности сваи;

*F*_{df}^{*} – полное сопротивление трению по внутренней поверхности трубосваи по [4].

Для учета явления «самозапирания» грунтового ядра можно использовать расчеты давления материалов в «силосе» (по Янсену) или методику, разработанную А.И. Прудентовым, или работу [1].

Например, из работы [1] имеем

$$q_{\mathcal{A}} = \frac{B}{A} \left[\exp(h_{\mathcal{A}} \cdot A) - 1 \right] \text{ при } \frac{B}{A} = \frac{2 \cdot c_0 + \gamma \cdot r_{\mathcal{A}}}{2 \cdot \xi \cdot tg \phi_0} \text{ и } A = \frac{2 \cdot \xi \cdot tg \phi_0}{r_{\mathcal{A}}}, (7)$$

где *h*_Я – высота грунтового ядра в полости сваи;

*φ*₀ *u c*₀ – угол трения и сцепление при сдвиге грунта по внутренней поверхности стальной трубосваи;

у- удельный вес грунта ядра;

*г*_я – радиус поперечного сечения ядра;

ξ – коэффициент бокового давления грунта (ξ=0,35...0,75 – от рыхлого песчаного к плотному влажному глинистому) [5].

Качественная картина изменения удельных лобовых сопротивлений грунтового ядра по глубине погружения h стальной трубосваи представлена на рис. 2.

Таблица 1. Значения коэффициентов трения песчаных грунтов по поверхности стали [5]

Вид грунта	Значение tgφ₀
Песок сухой (φ=35°)	0,5
- II – влажный (φ=30°)	0,4
- II – водонасыщенный (φ=30°)	0,3
Порошковые материалы	0,30,25

Из рис. 2 видно, что при h_я>h₃ трубосвая может рассчитываться по схеме с закрытым нижним концом (при R₈=R), т.е. как квазимонолитная свая.

А при h_я<h₁ будет происходить проталкивание (продвижение) грунта внутрь полости стальной трубосваи и расчёт следует вести при R_я=R*. При этом предполагается, что высота грунтового ядра h_я=h.

В пределах h₁<h₃ можно уверенно вести расчет по условию R_я=R* в предположении, что трение грунта по внутренней поверхности трубосваи не может быть менее, чем трение по ее внешней поверхности.

Однако в этом интервале возможно возникновение эффекта самозапирания грунта ядра в полости трубосваи, что ведет к существенному возрастанию сопротивления проталкиванию ядра (рис. 2). При этом для h₁<h₈<h₂ можно принять R₈=q₈, а при h₂<h₈<h₃, соответственно, ввести в расчет R₈=R.

Также в своем исследовании при расчете прочности материала сваи будем использовать методику, изложенную в [3].

Пример расчета стальной трубчатой сваи Ø1020х10мм

1. Исходные данные представлены в табл. 2.

Примем предел текучести материала сваи σ_{тек}=2500 кгс/см²

Примем Кдин=1,2

2. Данные по геологии представлены в табл. 3.

Таблица 2

Характеристика	Символ	Значение	Ед.изм
Диаметр сваи	D	1,02	м
Толщина стенки	δ	0,01	м
Радиус поперечного сечения ядра по стенке	r _я	0,5	м
Площадь сечения ядра по стенке	Ая	0,785	M ²
Площадь сечения стали по стенке	А нетто ст	0,0317	M ²
Периметр сваи	u	3,20	м
Площадь сваи	А	0,82	M ²

Гаолица з	•
Характеристики	ИГЭ
Наименование	песок средний
Состояние	текучая
IL	-
ξ	0,4
φο	30
с _о , т\м ²	-
у _{взв} , т\м ³	1
ус	1
ycf	1
ycR	1,2

3. Проведем расчет прочности материала сваи по методике, изложенной в [3]

Сразу зададимся целью определить условия, при которых свая будет работать наиболее эффективно: предположим, что напряжение в свае равно пределу текучести материала сваи (предполагая, что это предельное состояние, при котором материал еще находится в пределах подчинения закону Гука).

3.1. Из формул (2) и (3) [3] и условия, что ос=отек, определим:

$$F_d = \frac{2500 \times 317}{1,2} = 660420 \kappa c c = 660,42 mc$$

3.2. По формулам (4), (5), (6) [3]:

$$R_{\mathcal{A}} = \frac{2500 \times 1}{0.4 \times 50} = 125 \kappa c / c m^2 = 1250 mc / m^2$$

3.3. Проведем расчет сваи по (8) [4] и запишем результат в табличном виде (табл. 4).

			-							
№ расч.слоя	h _i , м	h _п ,м	h _{cp} ,м	R _i , тс/м ²	f _i , тс/м ²	f _i h _i , тс/м	∑f _i h _i , тс/м	Fd _f , тс	Fd _{Rnet} , тс	Fd, тс
0	0	0	0	0	0	0	0,0	0,0	0,0	0,00
1	1	1	0,5	104	1,75	1,75	1,75	5,6	4,0	9,56
2	1	2	1,5	200	3,85	3,85	5,60	17,9	7,6	25,5
3	1	3	2,5	310	4,5	4,5	10,1	32,3	11,8	44,1
4	1	4	3,5	320	5,05	5,05	15,2	48,5	12,2	60,7
5	1	5	4,5	338	5,45	5,45	20,6	65,9	12,8	78,8
6	1	6	5,5	355	5,7	5,7	26,3	84,2	13,5	97,7
7	1	7	6,5	368	5,9	5,9	32,2	103	14,0	117
8	1	8	7,5	380	6,1	6,1	38,3	123	14,5	137
9	1	9	8,5	390	6,28	6,28	44,6	143	14,8	157
10	1	10	9,5	400	6,43	6,43	51,0	163	15,2	178
11	1	11	10,5	408	6,57	6,57	57,6	184	15,5	200
12	1	12	11,5	416	6,71	6,71	64,3	206	15,8	222
13	1	13	12,5	424	6,85	6,85	71,1	228	16,1	244
14	1	14	13,5	432	6,99	6,99	78,1	250	16,4	266
15	1	15	14,5	440	7,13	7,13	85,3	273	16,7	290
16	1	16	15,5	448	7,27	7,27	92,5	296	17,0	313
17	1	17	16,5	456	7,41	7,41	99,9	320	17,3	337
18	1	18	17,5	464	7,55	7,55	107	344	17,7	362
19	1	19	18,5	472	7,69	7,69	115	369	18,0	386
20	1	20	19,5	480	7,83	7,83	123	394	18,3	412
21	1	21	20,5	488	7,97	7,97	131	419	18,6	438
22	1	22	21,5	496	8,11	8,11	139	445	18,9	464
23	1	23	22,5	504	8,25	8,25	147	471	19,2	491
24	1	24	23,5	512	8,39	8,39	156	498	19,5	518
25	1	25	24,5	520	8,53	8,53	164	526	19,8	545
26	1	26	25,5	528	8,67	8,67	173	553	20,1	573
27	1	27	26,5	536	8,81	8,81	182	582	20,4	602
28	1	28	27,5	544	8,95	8,95	191	610	20,7	631
29	1	29	28.5	552	9.09	9.09	200	639	21.0	660

Таблица 4. Определение несущей способности по СНиП [4]

Таким образом, длина сваи соответствующая несущей способности, полученной в п. 3.1, 29 метров.

- 4. Пример расчета, учитывая «естественное» самозапирание сваи.
 - 1) по формуле (2):

 $F_{df} = 1, 0.3, 2.1, 0(1, 75.1+1, 0.3, 85) = 17, 9mc;$

2) по формуле (3):

$$F_{dR} = 1.1, 2.200, 0.0, 0317 = 7, 61mc;$$

3) по формуле (7):

$$\frac{B}{A} = \frac{2 \cdot 0 + 1 \cdot 0.5}{2 \cdot 0.4 \cdot 0.3} = 2,08mc / m^2$$
$$A = \frac{2 \times 0.4 \times 0.3}{0.5} = 0.48 \frac{1}{m}$$
$$q_{g} = 2,08 \times \left[\exp(2,0 \times 0.48) - 1 \right] = 3,36mc / m^2;$$

4) по формуле (6):

$$R_B^* = \frac{17,9}{0,785} = 22,8mc / M^2;$$

5) по формуле (4):

$$F_{dg} = 1, 0.1, 0.22, 8.0, 785 = 17, 9mc;$$

6) по формуле (1):

$$F_d = 17,9+7,61+17,9 = 43,4mc$$
.

Результаты расчетов запишем в табличном виде (табл. 5).

Таблица 5. Расчет несущей способности стальной трубчатой сваи 1020x10 мм (с учетом грунтового ядра)

№ расч. слоя	h _i , м	h _п , м	f _i , тс/м ²	fihi, тс/м	∑fihi, тс/м	R _i , TC/M ²	R _в *, тс/м ²	q _я , тс∕м²	R _я , тс/м ²	Fd _f , tc	Fd _{Rnet} , TC	Fd _я , тс	Fd, тс
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1,75	1,75	1,75	104	7,1	1,28	7,1	5,6	3,96	5,6	15,2
2	1	2	3,85	3,85	5,60	200	22,8	3,36	22,8	17,9	7,61	17,9	43,4
3	1	3	4,50	4,50	10,1	310	41,2	6,71	41,2	32,3	11,8	32,3	76,4
4	1	4	5,05	5,05	15,2	320	61,8	12,1	61,8	48,5	12,2	48,5	109
5	1	5	5,45	5,45	20,6	338	84,0	20,9	84,0	65,9	12,8	65,9	145
6	1	6	5,70	5,70	26,3	355	107	35,0	107,2	84,2	13,5	84,2	182
7	1	7	5,90	5,90	32,2	368	131	57,9	131,3	103	14,0	103	220
8	1	8	6,10	6,10	38,3	380	156	94,8	156,1	123	14,5	123	260
9	1	9	6,28	6,28	44,6	390	182	155	181,7	143	14,8	143	300
10	1	10	6,43	6,43	51,0	400	208	251	251,1	163	15,2	197	376
11	1	11	6,57	6,57	57,6	408	235	407	407,0	184	15,5	320	519
12	1	12	6,71	6,71	64,3	416	262	659	416,0	206	15,8	327	548
13	1	13	6,85	6,85	71,1	424	290	1 066	424,0	228	16,1	333	577
14	1	14	6,99	6,99	78,1	432	318	1 725	432,0	250	16,4	339	606
15	1	15	7,13	7,13	85,3	440	348	2 788	440,0	273	16,7	345	635
16	1	16	7,27	7,27	92,5	448	377	4 508	448,0	296	17,0	352	665
17	1	17	7,41	7,41	99,9	456	407	7 286	456,0	320	17,3	358	695
18	1	18	7,55	7,55	107,5	464	438	11 776	464,0	344	17,7	364	726
19	1	19	7,69	7,69	115,2	472	469	19 032	472,0	369	18,0	371	757
	0,13	19,13	7,71	1,00	116,2	473	474	20 257	473,0	372	18,0	371	761

По результатам расчетов построим график зависимости лобовых сопротивлений в зависимости от глубины погружения сваи (рис. 3).

Рисунок 3. Зависимость удельных сопротивлений грунтового ядра R_я трубчатой сваи от глубины ее погружения h_п

 Вычислим толщину стенки трубосваи на характерных и промежуточных глубинах погружения из формул (2) и (3) [3] и условия, что σс=σтек (табл. 6).

 Определим коэффициент эффективности использования материала сваи в зависимости от глубины ее погружения (табл. 7).

Таблица 6									
	h _п , м	δ, мм							
1	3	1,15							
2	5	2,18							
3	7	3,31							
4	9,47	4,80							
5	10	5,67							
6	11	7,84							
7	15	9,61							
8	17	10,52							
9	19,13	11,54							

5. Результат.

- До 9,47 метров свая свободно прорезает грунт, лобовое сопротивление грунтового ядра на этом участке принимаем равным RB*.
- С 9,47 до 11 метров наблюдается эффект самозапирания, лобовое сопротивление грунтового ядра принимается равным q_я.
- С 11 до 19,13 метров свая начинает работать как свая с закрытым нижним концом, лобовое сопротивление грунтового ядра принимается равным R.

Принимаем длину сваи 20 метров.

Таблица 7

	h _п , м	K _{эфф}						
1	3	890						
2	5	534						
3	7	382						
4	9,47	282						
5	10	267						
6	11	243						
7	15	178						
8	17	157						
9	19,13	140						

Под коэффициентом эффективности К_{эфф} будем понимать отношение несущей способности к весу сваи. То есть мы определим, какую нагрузку способна нести одна единица веса материала.

Рисунок 4. График зависимости коэффициента эффективности К_{эфф} использования материала сваи от глубины ее погружения h_п

8. Определим удельную несущую способность фундамента qкрит.

$$q_{\kappa pum} = \frac{r_d}{A_{dvH\partial}}$$
 при $A_{dvH\partial} = a_s^2$ и $a_s = 3 \times d_{cb}$, (9)

где A_{dvhd} - площадь фундамента соответствующая одной свае;

33

Таблица 8. Результаты расчета удельной несущей способности

9. По результатам расчета видно:

- наиболее эффективно по расходу материала свая работает при минимальных глубинах погружения, т.е. чем длиннее свая, тем меньше будет коэффициент использования материала сваи:
- при расчете по СНиП [4] без учета самозапирания несущая способность сваи, в зависимости от глубины ее погружения, может заметно занижаться;
- толщина стенки сваи остается относительно небольшой, даже при достаточно большой глубине погружения сваи.
- 10. Проведем расчеты еще для нескольких различных диаметров и толщин стенки для того же материала сваи и тех же инженерно-геологических характеристик и проанализируем полученные результаты.

Рассчитаем сваи диаметром:

- ø1420x17,5мм
- ø1820x18мм
- ø2420x24мм

Полученные результаты запишем в табличном виде (табл. 9).

Таблица 9. Результаты расчета для свай ø1420x17,5мм, ø1820x18мм, ø2420x24мм

	ø1420x17,5мм								ø18	820x18мм		
N⁰	h _п , м	F _d , тс	δ, мм	Р _{св} , т	K _{эφφ}	$q_{\kappa p \mu \tau}, \tau c/m^2$	h _п , м	F _d ,тс	δ, мм	Р _{св} , т	K _{эφφ}	q _{крит} , тс/м ²
1	3	135	1,46	0,152	890	7,46	3	172	1,44	0,193	890	5,76
2	5	235	2,53	0,439	535	12,9	5	297	2,49	0,555	534	9,95
3	10	515	5,56	1,93	267	28,4	10	648	5,46	2,428	267	21,8
4	12,35	655	7,09	3,03	216	36,1	14,7	934	7,88	5,142	182	31,3
5	14,50	1 020	11,1	5,54	184	56,2	18	1 852	15,7	12,5	148	62,1
6	15	1 095	11,9	6,15	178	60,3	20	1 974	16,7	14,8	134	66,2
7	20	1 328	14,4	9,94	134	73,2	25	2 315	19,7	21,7	107	77,7
8	25	1 577	17,2	14,8	107	86,9	30	2 677	22,8	30,1	89	89,8
9	26,24	1 641	17,9	16,1	102	90,4	36,7	3 193	27,2	43,9	73	107
			Ø	2420х24мм								
1	3	246	1,55	0,28	890	4,67						
2	5	417	2,63	0,78	534	7,91						
3	10	897	5,67	3,36	267	17,0						
4	15	1430	9,03	8,03	178	27,1						
5	18,3	1811	11,4	12,4	146	34,4						
6	22,9	3462	21,9	29,7	117	65,7						
7	30	4200	26,5	47,2	89	79,7						
8	40	5333	33,7	79,9	67	101]					
9	48,6	6393	40,4	116,3	55	121						

Построим графики и проанализируем полученные результаты.

Рисунок 6. Сравнение графиков зависимостей коэффициентов эффективности К_{эфф} использования материала свай различного диаметра от глубины их погружения h_п

Рисунок 7. Сравнение графиков зависимостей **qкрит свай различного** диаметра от глубины их погружения h_п

Рисунок 8. Сравнение графиков зависимости толщины стенки δ свай, различного диаметра от глубины их погружения h_п

По результатам расчетов можно сделать следующие выводы.

Для одинакового материала сваи в одном и том же грунте, вне зависимости от диаметра и толщины стенки сваи, эффективность работы материала одинакова (небольшие расхождения в пределах 0,5% можно отнести к неточности вычислений). Таким образом, имея под руками графики для различных грунтов и материалов сваи, можно быстро и достаточно точно определять необходимые характеристики И анализировать сваи ee поведение.

- Фундаменты на сваях меньшего диаметра имеют большую удельную несущую способность (см. рис.9.). Особенно характерно это в тот момент, когда свая меньшего диаметра переходит точку 1 или 2 (момент начала естественного самозапирания), а свая большего диаметра еще остается в диапазоне значений, предшествующих данной точке (1 или 2).
- Все характеристики, полученные в результате расчетов, меняются по одинаковым законам и меняют свою направленность при переходе от одной характерной точки к другой. Лишь для эффективности использования материала сваи не имеет значения переход от одних характерных точек к другим.

Рисунок 9. Анализ графиков зависимостей qкрит свай различного диаметра от глубины их погружения h_п

При проведении расчетов на одном диаметре 1420 мм и разных начальных толщинах стенки (10, 14, 17,5 мм), было выявлено, что значения численных и графических результатов практически одинаковы и различаются не больше чем на 2,5%. Таким образом, в первом приближении можно принять, что при одном и том же диаметре результат расчета не зависит от изначальной толщины стенки.

Выводы по статье можно сделать следующие.

- Грунтовое ядро значительно влияет на несущую способность сваи, и пренебрегать этим при расчетах СТС не стоит, так как в значительной степени занижается реальная несущая способность.
- При расчете эффективности использования материала сваи для одного материала и одного грунта не имеет значения ни начальная толщина стенки, ни диаметр сваи – зависимость и значения одинаковы. В будущем это можно использовать для упрощения расчетов свай.
- При одном и том же диаметре начальная толщина стенки либо не влияет на получаемые зависимости совсем, либо влияет в очень незначительной степени.
- Сваи большого диаметра уместно применять только в том случае, если необходимо получить повышенную несущую способность, и, как следствие, бить сваю очень глубоко. Наибольшую же эффективность как по расходу материалов, так и по удельной несущей способности дают сваи меньшего диаметра и при меньшей глубине забивки.

Получается, что строить на сваях при меньших диаметрах и глубинах забивки, но при большей концентрации на единицу площади намного эффективнее.

К этому можно добавить, что во Франции технологию возведения зданий и сооружений, на сваях малых диаметров и малой длины уже запатентовали и начали осваивать (к сожалению, данных в открытых источниках практически нет).

Литература

- 1. Булатов Г.Я., Словцов Д.И. К теории трубосвай // Технология, строительство и эксплуатация инженерных систем. Материалы межвузовской научной конференции. СПб., 2002. С. 34-35.
- 2. Булатов Г.Я., Костюкова А.Ю. Технология возведения фундаментов «свая в трубе // Инженерностроительный журнал, №1, 2008. Спб., 2008.
- 3. Булатов Г.Я., Костюкова А.Ю. Новая технология «фундамент на трубогрунте» // Инженерно-строительный журнал, №2, 2008. Спб., 2008.
- 4. СНиП 2.02.03.-85 «Свайные фундаменты». М., 1985.
- 5. Справочник проектировщика промышленных и гражданских зданий и сооружений: расчётно-теоретический / Под ред. А.А. Уманского. М., 1960.

* Антон Павлович Ножнов, Санкт-Петербург Тел. моб.: +7(921)402-05-14; эл. почта: life-is_good@mail.ru